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The cellular targets of enteric motor neurones
are gastrointestinal smooth muscle cells, inter-
stitial cells of Cajal (ICC), motor neurones
themselves, neuroendocrine cells, mucosal
secretory and absorptive cells, secretory
glands, blood vessels, and immune cells.1 The
eVects of motor neurones on smooth muscles,
particularly the circular muscle cells and ICCs,
are precise in timing whereas their eVects on
other targets may be somewhat diVuse and
long lasting. The enteric motor neurones
themselves are targets for intrinsic sensory
neurones, enteric interneurones, motor neu-
rones, axons of extrinsic primary aVerents,
vagal-sacral preganglionic neurones, sympa-
thetic postganglionic neurones, and local and
endocrine mediators.

The major physiological neurotransmitters
of motor neurones are acetylcholine (ACh),
adenosine triphosphate (ATP), tachykinins
(substance P and neurokinin (NK) A), vasoac-
tive intestinal peptide (VIP)-pituitary activat-
ing cyclic AMP peptide, and nitric oxide
(NO).1 Release of neurotransmitter such as
ACh is inhibited by presynaptic muscarinic M2

receptors, tachykinin NK2 and NK3 receptors,
and by NO.

Each of the motor neurotransmitters has a
large number of receptor subtypes coupled to a
diverse array of intracellular signalling path-
ways, sometimes producing opposing actions.

Some of the important issues related to motor
neuromuscular transmissions are:
(1) DiVerences between the actions of endog-

enous neurotransmitters and the exog-
enously administered transmitter candi-
date.

(2) Regional diVerences in the actions of
motor neurone activation on diVerent
tissue layers and diVerent regions of the
same tissue layer of the same organ. There
are also obvious diVerences based on organ
system and animal species.

(3) In several systems there may be redun-
dancy so that block of one pathway may be
compensated for by another parallel path-
way serving a similar function.

(4) Finally, during events such as peristalsis,
there is a precisely timed sequential activa-
tion of inhibitory and excitatory neurones.

The major excitatory motor pathway in-
volves acetylcholine and tachykinins (sub-
stance P and NKA) that are frequently
colocalised in motor nerve endings. Prejunc-
tional autoreceptors for acetylcholine (M2

muscarinic) and TK (NK2 and NK3) act to
inhibit and therefore limit acetylcholine re-
lease. On electrical field stimulation, the
cholinergic component of the action starts ear-
lier and lasts for a shorter period of time than
the tachykinergic component. The TK re-
sponses become more prominent with greater
intensities of electrical stimulation. Finally,
there are marked regional diVerences in
cholinergic and TK innervation.2 Another
interesting regional diVerence shown by
cholinergic neurotransmission is the observa-
tion that while M2 muscarinic receptor coupled
to Gi mediates contraction of oesophageal
circular muscle, M3 muscarinic receptor cou-
pled to Gq/11 mediates contraction of the lower
oesophageal sphincter smooth muscle.3

The main inhibitory neurotransmitters are
ATP, NO, and VIP (fig 1).4 5 The nerve endings
that release ATP are not known and nitric
oxide synthase (NOS) and VIP are frequently
colocalised. Based on their characteristics, two
types of inhibitory junction potentials (IJP) can
be identified: fast and slow (fig 2). ATP is
responsible for fast IJP and the associated
mechanical relaxation is mediated via the P2y

purinoreceptor and apamin sensitive small
conductance calcium activated potassium
channel.6 7 There are marked regional varia-

Abbreviations used in this paper: ICC, interstitial
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Figure 1 Inhibitory pathways mediating relaxation of smooth muscle. IJP, inhibitory
junction potentials; ATP, adenosine triphosphate; ACh, acetylcholine; cGMP, cyclic
guanosine monophosphate; NO, nitric oxide; NOS, nitric oxide synthase; AP, action
potential; VIP, vasoactive intestinal peptide; -R, receptor.
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tions in the distribution of the purinergic
inhibitory pathway. NO (NOv redox form)
derived from neuronal NOS is responsible for
the slow IJP.8 The nitrergic slow IJP and asso-
ciated mechanical relaxation is mediated via
the cyclic guanosine monophosphate pathway
that acts by suppressing resting chloride
conductance.9 Peptide VIP acts to cause on
demand synthesis and release of NO from

NOS containing nerve endings. VIP may also
act as a parallel neurotransmitter to cause
pharmacomechanically coupled relaxation via
the cyclic adenosine monophosphate signalling
pathway.10–12

In producing peristaltic contractions, the
inhibitory and excitatory nerves work together
to produce a sequence of inhibition followed by
excitation (fig 3).13 Activation of inhibitory
purinergic nerves (where operative) produces
fast inhibition followed by a more prolonged
inhibition due to activation of nitrergic nerves.
On cessation of activation of the inhibitory
nerves, a rebound excitation ensues. Moreover,
after activation of the inhibitory nerves is over,
excitatory nerves are activated. Excitation due
to ACh and TK is superimposed on the
rebound contraction that results in a contrac-
tion wave with cholinergic, tachykinergic, and
rebound components. The contribution of
these three components may vary depending
on the experimental conditions and region of
the gut.
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Figure 2 Pharmacology of fast and slow inhibitory junction potentials (IJPs).
L-NA, Nw-nitro L-arginine; NFA, niflumic acid;
ODQ, 1 H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one.
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Figure 3 Sequence of inhibition and excitation which may explain peristalsis.
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